\begin{tabbing} ecl{-}machine at $i$ with state \$ecl \\[0ex] \\[0ex]$A$ \\[0ex] \\[0ex]state variables ${\it ds}$ \\[0ex] \\[0ex]actions ${\it da}$ \\[0ex] \\[0ex]sends ${\it snd}$ \\[0ex] \\[0ex]updates ${\it upd}$ \\[0ex]$\,\equiv$$_{\mbox{\scriptsize def}}$$\;\;$\=ecl{-}machine1\=\{\$ecl:ut2\}\+\+ \\[0ex]($i$; ${\it ds}$; ${\it da}$; $A$) \-\\[0ex]$\oplus$ \=let $T$,${\it ks}$,${\it init}$,${\it tr}$,$h$,$a$,${\it es}$ = ecl{-}trans($A$) in \+ \\[0ex]ecl{-}machine2($i$;${\it ds}$;${\it da}$;"\$ecl";$T$;${\it ks}$;$a$;${\it upd}$) $\oplus$ ecl{-}machine3(${\it ds}$;${\it da}$;"\$ecl";$T$;${\it ks}$;$a$;${\it snd}$) \-\- \end{tabbing}